
©2024 Databricks Inc. — All rights reserved 1

BUILDING
METRICS
STORE WITH
INCREMENTAL
PROCESSING
Hang Li
June 2024

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Instacart Ads Measurement Team

2

About Us

Instacart Ads

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Challenges of Building Business Metrics

• Importance of Metrics Stores

• The Power of Incremental Processing

• Testing and Monitoring

• Case Study

• Q&A

3

Agenda

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics
definition

• Inconsistent metrics derived
from different sources

• Error introduced during clone
and edit

• Inconsistent application and
enforcement of policies, such
as PII, financial controls and
cost-effectiveness.

• Batch processing with static
lookback windows doesn’t
scale well to increasing data
volumes

• Redundant reprocessing leads
to a waste of time and
computational resources

• Slow processing delays the
availability of insights for
decision making

• Gaps in review

• Insufficient testing

• No unit test during
development phase

Consistency Scalability Reliability

4

Challenges

4

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics
definition

• Inconsistent metrics derived
from different sources

• Error introduced during clone
and edit

• Inconsistent application and
enforcement of policies, such
as PII, financial controls and
cost-effectiveness.

• Batch query doesn’t scale well
to increasing data volumes

• Redundant reprocessing leads
to a waste of time and
computational resources

• Slow processing delays the
availability of insights for
decision making

• Gaps in review

• Insufficient testing

• No unit test during
development phase

Consistency Scalability Reliability

5

Challenges

5

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Centralized storage system for
metrics

• Single source of truth for
definition and data

• Data reusable across teams and
applications

• Optimized for efficient
computation and low-latency
retrieval

6

Metrics Store

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics
definition

• Inconsistent metrics derived
from different sources

• Error introduced during clone
and edit

• Inconsistent application and
enforcement of policies, such
as PII, financial controls and
cost-effectiveness.

• Batch query doesn’t scale well
to increasing data volumes

• Redundant reprocessing leads
to a waste of time and
computational resources

• Slow processing delays the
availability of insights for
decision making

• Gaps in review

• Insufficient testing

• No unit test during
development phase

Consistency Scalability Reliability

7

Challenges

7

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Batch Processing Incremental ProcessingRealtime Processing

8

Incremental Processing

• Accumulated large volume data

• Moderate to high latency

• Low complexity

• Only new/changed data

• Low to moderate latency

• Moderate complexity

• Data as it arrives

• Very low latency

• High complexity

8

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Efficiency
• Faster processing speed

• Lower Infra cost

• Scalability
• Load grows with the data change rate, not the

total volume

• Facilitate complex metrics calculation like
cumulative metrics

9

Minimize Data Reprocessing

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Use structured streaming and checkpoint to allow
exact once processing

• No extra effort required to deal with late arrival data

• Example: Flatten JSON files into structured table

• Only process changed data in a stateless job

• Minimize the reprocessing window in a stateful job
by identifying the earliest change data

• Example: Populate dimension table from event
stream

• Example: Minimize budget consolidation
reprocessing window

Structured Streaming + Checkpoint Change Data Feed

10

Implementation Strategies with DBX

10

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics
definition

• Inconsistent metrics derived
from different sources

• Error introduced during clone
and edit

• Inconsistent application and
enforcement of policies, such
as PII, financial controls and
cost-effectiveness.

• Batch query doesn’t scale well
to increasing data volumes

• Redundant reprocessing leads
to a waste of time and
computational resources

• Slow processing delays the
availability of insights for
decision making

• Gaps in review

• Insufficient testing

• No unit test during
development phase

Consistency Scalability Reliability

11

Challenges

11

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Code review, Testing and Monitoring are mandatory for Datasets
maintained in the Metrics Store.

Each iterations made to the underlying pipelines is safeguarded by:

• Unit testing: Mock inputs and assert each component.

• Monitoring: Automatically generate data monitors for our pipelines.

12

Testing And Monitoring

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Spark Scala

Sample Scala Code for Unit Test

test("Test metrics happy path") {

val inputDfMap = mockedInputDfMap

val expectedDf = generateDataFrame(schema, mockdata)

val actualDf = Transform.apply(inputDfMap, configArgs, "testMetricName")

assertDataFrameEquals(

expectedDf,

actualDf,

strictColOrder = false,

ignoreNullable = true

)

}

Testing and Monitoring

1313

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

SQL

Sample SQL Code for Data Quality Monitoring

Template to generate duplicate checks
select {{primary_key}}, count(*) as ct

from {{table_name}}

where true

and event_date_time_utc >= current_timestamp - interval
{{look_back_hour}} hour

group by {{primary_key}}

having ct > 1

limit 10

Testing and Monitoring

14

JSON

Data check configuration
[
{
"table_name": "table_name_example_1",
"pipeline_type": "type_1",
"priority": "P2",
"primary_key": "event_id",
"look_back_hour": 24

},
{
"table_name": "table_name_example_2",
"pipeline_type": "type_2",
"priority": "P3",
"primary_key": "event_id",
"look_back_hour": 24

}
]

14

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics
definition

• Inconsistent metrics derived
from different sources

• Error introduced during clone
and edit

• Inconsistent application and
enforcement of policies, such
as PII, financial controls and
cost-effectiveness.

• Batch query doesn’t scale well
to increasing data volumes

• Redundant reprocessing leads
to a waste of time and
computational resources

• Slow processing delays the
availability of insights for
decision making

• Gaps in review

• Insufficient testing

• No unit test during
development phase

Consistency Scalability Reliability

15

Challenges

15

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Build a user eligibility table for
experimentation analysis

• User eligibility table stores the
timestamp indicating when a
user begins participating in each
experiment

16

Case Study - User Eligibility

16

Control
Subset of randomly

assigned users
available

for ad exposure.

Holdout
Subset of randomly
assigned users held

out from ad
exposure.

Sales generated
from

Control user
population.

Sales generated
from Holdout user

population.

Eligible
Users

Ads Experiment

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Input - event stream emitted
during assignment

• Output - dimension table of user
eligibility with first assigned
timestamp

• Metrics shared by monitoring,
analysis, reporting

• Structured Streaming,
Checkpoint, Merge

17

Case Study - User Eligibility

17

Ads Serving and Processing

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

SQL

Code Snippet for Batch Solution

SELECT

experiment_id,

experiment_type,

variant,

user_id,

MIN(timestamp) AS first_assign_date_time_pt

FROM

{event_table_name}

WHERE

timestamp >= {experiment_start_timestamp}

GROUP BY 1,2,3,4

User Eligibility Calculation

1818

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Spark Scala

Code Snippet for Structured Streaming Read

def readStreamTimestamp(deltaPath: String,startingTimestamp: String)
(

implicit sparkSession: SparkSession,

): DataFrame = {

log(s"Reading Stream from timestamp $startingTimestamp and path $deltaPath")

sparkSession.readStream

.format("delta")

.option("startingTimestamp", startingTimestamp)

.option("ignoreDeletes", "true")

.option("ignoreChanges", "true")

.load(deltaPath)

}

User Eligibility Calculation

1919

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Spark Scala

Code Snippet for Merge Write

deltaTableUserEligibility

.alias("existing")

.merge(

dataFrame.alias("newData"),

s"newData.USER_ID = existing.USER_ID" +

s" AND newData.EXPERIMENT_ID = existing.EXPERIMENT_ID" +

s" AND newData.EXPERIMENT_TYPE = existing.EXPERIMENT_TYPE" +

s" AND newData.VARIANT = existing.VARIANT",

)

User Eligibility Calculation

2020

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Spark Scala

Code Snippet for Merge Write

.whenNotMatched()

.insertExpr(

Map(

USER_ID -> s"newData.USER_ID",

EXPERIMENT_ID -> s"newData.EXPERIMENT_ID",

EXPERIMENT_TYPE -> s"newData.EXPERIMENT_TYPE",

VARIANT -> s"newData.VARIANT",

FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",

FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",

),

)

User Eligibility Calculation

2121

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Spark Scala

Code Snippet for Merge Write

.whenMatched(s"newData.FIRST_ASSIGN_DATE_TIME_PT < existing.FIRST_ASSIGN_DATE_TIME_PT")

.updateExpr(

Map(

FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",

FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",

),

)

User Eligibility Calculation

2222

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 2323

Thank you!

	BUILDING METRICS STORE WITH INCREMENTAL PROCESSING

	About Us
	Agenda
	Challenges
	Challenges
	Metrics Store
	Challenges
	Incremental Processing
	Minimize Data Reprocessing
	Implementation Strategies with DBX
	Challenges
	Testing And Monitoring
	Testing and Monitoring
	Testing and Monitoring
	Challenges
	Case Study - User Eligibility
	Case Study - User Eligibility
	User Eligibility Calculation
	User Eligibility Calculation
	User Eligibility Calculation
	User Eligibility Calculation
	User Eligibility Calculation
	Slide Number 23

