

BUILDING **METRICS** STORE WITH INCREMENTAL PROCESSING

Hang Li June 2024

About Us

Instacart Ads Measurement Team

Soom Foods Reaches New Customers and Grows Sales 261% on Instacart

Agenda

- Challenges of Building Business Metrics
- Importance of Metrics Stores
- The Power of Incremental Processing
- Testing and Monitoring
- Case Study
- Q&A

Consistency

- Inconsistency in the metrics definition
- Inconsistent metrics derived from different sources
- Error introduced during clone and edit
- Inconsistent application and enforcement of policies, such as PII, financial controls and cost-effectiveness.

Scalability

- Batch processing with static lookback windows doesn't scale well to increasing data volumes
- Redundant reprocessing leads to a waste of time and computational resources
- Slow processing delays the availability of insights for decision making

Reliability

- Gaps in review
- Insufficient testing
- No unit test during development phase

Consistency

- Inconsistency in the metrics definition
- Inconsistent metrics derived from different sources
- Error introduced during clone and edit
- Inconsistent application and enforcement of policies, such as PII, financial controls and cost-effectiveness.

Scalability

- Batch query doesn't scale well to increasing data volumes
- Redundant reprocessing leads to a waste of time and computational resources
- Slow processing delays the availability of insights for decision making

Reliability

- Gaps in review
- Insufficient testing
- No unit test during development phase

Metrics Store

- Centralized storage system for metrics
- Single source of truth for definition and data
- Data reusable across teams and applications
- Optimized for efficient computation and low-latency retrieval

Consistency

- Inconsistency in the metrics definition
- Inconsistent metrics derived from different sources
- Error introduced during clone and edit
- Inconsistent application and enforcement of policies, such as PII, financial controls and cost-effectiveness.

Scalability

- Batch query doesn't scale well to increasing data volumes
- Redundant reprocessing leads to a waste of time and computational resources
- Slow processing delays the availability of insights for decision making

©2024 Databricks Inc. — All rights reserved

Reliability

- Gaps in review
- Insufficient testing
- No unit test during development phase

Incremental Processing

Batch Processing

- Accumulated large volume data
- Moderate to high latency
- Low complexity

Realtime Processing

- Data as it arrives
- Very low latency
- High complexity

Incremental Processing

- Only new/changed data
- Low to moderate latency
- Moderate complexity

Minimize Data Reprocessing

Efficiency

- Faster processing speed
- Lower Infra cost

Scalability

- Load grows with the data change rate, not the total volume
- Facilitate complex metrics calculation like cumulative metrics

Implementation Strategies with DBX

- Use structured streaming and checkpoint to allow exact once processing
- No extra effort required to deal with late arrival data
- Example: Flatten JSON files into structured table

Change Data Feed

- Only process changed data in a stateless job
- Minimize the reprocessing window in a stateful job by identifying the earliest change data
- Example: Populate dimension table from event stream
- Example: Minimize budget consolidation reprocessing window

Consistency

- Inconsistency in the metrics definition
- Inconsistent metrics derived from different sources
- Error introduced during clone and edit
- Inconsistent application and enforcement of policies, such as PII, financial controls and cost-effectiveness.

Scalability

- Batch query doesn't scale well to increasing data volumes
- Redundant reprocessing leads to a waste of time and computational resources
- Slow processing delays the availability of insights for decision making

©2024 Databricks Inc. — All rights reserved

Reliability

- Gaps in review
- Insufficient testing
- No unit test during development phase

11

Testing And Monitoring

Code review, **Testing** and **Monitoring** are mandatory for Datasets maintained in the Metrics Store.

Each iterations made to the underlying pipelines is safeguarded by:

• Unit testing: Mock inputs and assert each component.

Monitoring: Automatically generate data monitors for our pipelines.

Testing and Monitoring

Sample Scala Code for Unit Test

```
Spark Scala
test("Test metrics happy path") {
  val inputDfMap = mockedInputDfMap
  val expectedDf = generateDataFrame(schema, mockdata)
   val actualDf = Transform.apply(inputDfMap, configArgs, "testMetricName")
   assertDataFrameEquals(
    expectedDf,
    actualDf,
     strictColOrder = false,
     ignoreNullable = true
```

Testing and Monitoring

Sample SQL Code for Data Quality Monitoring

```
SQL
                                                                         JSON
# Template to generate duplicate checks
                                                                         # Data check configuration
select {{primary_key}}, count(*) as ct
from {{table_name}}
                                                                            "table_name": "table_name_example_1",
                                                                            "pipeline_type": "type_1",
where true
                                                                            "priority": "P2",
                                                                            "primary_key": "event_id",
and event_date_time_utc >= current_timestamp - interval
                                                                            "look_back_hour": 24
{{look_back_hour}} hour
group by {{primary_key}}
                                                                            "table_name": "table_name_example_2",
                                                                            "pipeline_type": "type_2",
having ct > 1
                                                                            "priority": "P3",
                                                                            "primary_key": "event_id",
limit 10
                                                                            "look back hour": 24
```

Consistency

- Inconsistency in the metrics definition
- Inconsistent metrics derived from different sources
- Error introduced during clone and edit
- Ingonsistent application and enforcement of policies, such as PII, financial controls and cost-effectiveness.

Scalability

- Batch query doesn't scale well to increasing data volumes
- Redundant reprocessing leads to a waste of time and computational resources
- Slow processing delays the availability of insights for decision making

Reliability

- Gaps in review
- Insufficient testing
- No unit test during development phase

Case Study - User Eligibility

- Build a user eligibility table for experimentation analysis
- User eligibility table stores the timestamp indicating when a user begins participating in each experiment

Case Study - User Eligibility

- Input event stream emitted during assignment
- Output dimension table of user eligibility with first assigned timestamp
- Metrics shared by monitoring, analysis, reporting
- Structured Streaming, Checkpoint, Merge

Code Snippet for Batch Solution

```
SQL
SELECT
    experiment_id,
    experiment_type,
    variant,
    user_id,
    MIN(timestamp) AS first_assign_date_time_pt
FROM
    {event_table_name}
WHERE
    timestamp >= {experiment_start_timestamp}
GROUP BY 1,2,3,4
```

Code Snippet for Structured Streaming Read

```
Spark Scala
def readStreamTimestamp(deltaPath: String, startingTimestamp: String)
     implicit sparkSession: SparkSession,
   ): DataFrame = {
   log(s"Reading Stream from timestamp $startingTimestamp and path $deltaPath")
   sparkSession.readStream
     .format("delta")
     .option("startingTimestamp", startingTimestamp)
     .option("ignoreDeletes", "true")
     .option("ignoreChanges", "true")
     .load(deltaPath)
```

Code Snippet for Merge Write

```
Spark Scala
  deltaTableUserEligibility
     .alias("existing")
     .merge(
         dataFrame.alias("newData"),
         s"newData.USER_ID = existing.USER_ID" +
           s" AND newData.EXPERIMENT_ID = existing.EXPERIMENT_ID" +
           s" AND newData.EXPERIMENT_TYPE = existing.EXPERIMENT_TYPE" +
           s" AND newData.VARIANT = existing.VARIANT",
```

Code Snippet for Merge Write

```
Spark Scala
     .whenNotMatched()
     .insertExpr(
        Map(
             USER_ID -> s"newData.USER_ID",
             EXPERIMENT_ID -> s"newData.EXPERIMENT_ID",
             EXPERIMENT_TYPE -> s"newData.EXPERIMENT_TYPE",
             VARIANT -> s"newData.VARIANT",
             FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",
             FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",
```

Code Snippet for Merge Write

```
Spark Scala
     .whenMatched(s"newData.FIRST_ASSIGN_DATE_TIME_PT < existing.FIRST_ASSIGN_DATE_TIME_PT")
     .updateExpr(
         Map(
             FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",
             FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",
```

Thank you!