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Instacart Ads Measurement Team
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• Challenges of Building Business Metrics

• Importance of Metrics Stores

• The Power of Incremental Processing

• Testing and Monitoring

• Case Study

• Q&A

3

Agenda



©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Inconsistency in the metrics 
definition

• Inconsistent metrics derived 
from different sources

• Error introduced during clone 
and edit

• Inconsistent application and 
enforcement of policies, such 
as PII, financial controls and 
cost-effectiveness.

• Batch processing with static 
lookback windows doesn’t 
scale well to increasing data 
volumes

• Redundant reprocessing leads 
to a waste of time and 
computational resources

• Slow processing delays the 
availability of insights for 
decision making

• Gaps in review

• Insufficient testing

• No unit test during 
development phase

Consistency Scalability Reliability
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Challenges
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• Centralized storage system for 
metrics

• Single source of truth for 
definition and data

• Data reusable across teams and 
applications

• Optimized for efficient 
computation and low-latency 
retrieval  
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Metrics Store
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Batch Processing Incremental ProcessingRealtime Processing

8

Incremental Processing

• Accumulated large volume data

• Moderate to high latency

• Low complexity

• Only new/changed data

• Low to moderate latency

• Moderate complexity

• Data as it arrives

• Very low latency

• High complexity
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• Efficiency
• Faster processing speed

• Lower Infra cost

• Scalability
• Load grows with the data change rate, not the 

total volume

• Facilitate complex metrics calculation like 
cumulative metrics 
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Minimize Data Reprocessing
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• Use structured streaming and checkpoint to allow 
exact once processing

• No extra effort required to deal with late arrival data

• Example: Flatten JSON files into structured table

• Only process changed data in a stateless job

• Minimize the reprocessing window in a stateful job 
by identifying the earliest change data

• Example: Populate dimension table from event 
stream

• Example: Minimize budget consolidation 
reprocessing window

Structured Streaming + Checkpoint Change Data Feed 
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Implementation Strategies with DBX
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Code review, Testing and Monitoring are mandatory for Datasets 
maintained in the Metrics Store.

Each iterations made to the underlying pipelines is safeguarded by:

• Unit testing: Mock inputs and assert each component.

• Monitoring: Automatically generate data monitors for our pipelines.
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Testing And Monitoring
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Spark Scala

Sample Scala Code for Unit Test

test("Test metrics happy path") {

val inputDfMap = mockedInputDfMap

val expectedDf = generateDataFrame(schema, mockdata)

val actualDf = Transform.apply(inputDfMap, configArgs, "testMetricName") 

assertDataFrameEquals(

expectedDf,

actualDf,

strictColOrder = false,

ignoreNullable = true

)

}

Testing and Monitoring
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SQL

Sample SQL Code for Data Quality Monitoring

# Template to generate duplicate checks
select {{primary_key}}, count(*) as ct

from {{table_name}}

where true

and event_date_time_utc >= current_timestamp - interval 
{{look_back_hour}} hour

group by {{primary_key}}

having ct > 1

limit 10

Testing and Monitoring
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JSON

# Data check configuration
[
{
"table_name": "table_name_example_1",
"pipeline_type": "type_1",
"priority": "P2",
"primary_key": "event_id",
"look_back_hour": 24

},
{
"table_name": "table_name_example_2",
"pipeline_type": "type_2",
"priority": "P3",
"primary_key": "event_id",
"look_back_hour": 24

}
]
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• Build a user eligibility table for 
experimentation analysis

• User eligibility table stores the 
timestamp indicating when a 
user begins participating in each 
experiment
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Case Study - User Eligibility
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Control
Subset of randomly 

assigned users 
available 

for ad exposure.

Holdout
Subset of randomly 
assigned users held 

out from ad 
exposure.

Sales generated 
from 

Control user 
population.

Sales generated 
from Holdout user 

population.

Eligible 
Users

Ads Experiment
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• Input - event stream emitted 
during assignment

• Output - dimension table of user 
eligibility with first assigned 
timestamp

• Metrics shared by monitoring, 
analysis, reporting

• Structured Streaming, 
Checkpoint, Merge
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Case Study - User Eligibility
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Ads Serving and Processing
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SQL

Code Snippet for Batch Solution

SELECT 

experiment_id,

experiment_type,

variant,

user_id,

MIN(timestamp) AS first_assign_date_time_pt

FROM 

{event_table_name}

WHERE 

timestamp >= {experiment_start_timestamp}

GROUP BY 1,2,3,4

User Eligibility Calculation
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Spark Scala

Code Snippet for Structured Streaming Read

def readStreamTimestamp(deltaPath: String,startingTimestamp: String)
(

implicit sparkSession: SparkSession,

): DataFrame = {

log(s"Reading Stream from timestamp $startingTimestamp and path $deltaPath")

sparkSession.readStream

.format("delta")

.option("startingTimestamp", startingTimestamp)

.option("ignoreDeletes", "true")

.option("ignoreChanges", "true")

.load(deltaPath)

}

User Eligibility Calculation
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Spark Scala

Code Snippet for Merge Write

deltaTableUserEligibility

.alias("existing")

.merge(

dataFrame.alias("newData"),

s"newData.USER_ID = existing.USER_ID" +

s" AND newData.EXPERIMENT_ID = existing.EXPERIMENT_ID" +

s" AND newData.EXPERIMENT_TYPE = existing.EXPERIMENT_TYPE" +

s" AND newData.VARIANT = existing.VARIANT",

)

User Eligibility Calculation
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Spark Scala

Code Snippet for Merge Write

.whenNotMatched()

.insertExpr(

Map(

USER_ID -> s"newData.USER_ID",

EXPERIMENT_ID -> s"newData.EXPERIMENT_ID",

EXPERIMENT_TYPE -> s"newData.EXPERIMENT_TYPE",

VARIANT -> s"newData.VARIANT",

FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",

FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",

),

)

User Eligibility Calculation
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Spark Scala

Code Snippet for Merge Write

.whenMatched(s"newData.FIRST_ASSIGN_DATE_TIME_PT < existing.FIRST_ASSIGN_DATE_TIME_PT")

.updateExpr(

Map(

FIRST_ASSIGN_DATE_TIME_PT -> s"newData.FIRST_ASSIGN_DATE_TIME_PT",

FIRST_ASSIGN_DATE_PT -> s"newData.FIRST_ASSIGN_DATE_PT",

),

)

User Eligibility Calculation
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Thank you!
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